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Abstract. The λ-medial axis was introduced in 2005 by Chazal and
Lieutier as a new concept for computing the medial axis of a shape sub-
ject to filtering with a single parameter. These authors proved the stabil-
ity of the λ-medial axis under small shape perturbations. In this paper,
we introduce the definition of a discrete λ-medial axis (DLMA). We
evaluate its stability and rotation invariance experimentally. The DLMA
may be computed by efficient algorithms, furthermore we introduce a
variant of the DLMA, denoted by DL’MA, which may be computed in
linear-time. We compare the DLMA and the DL’MA with the recently
introduced integer medial axis and show that both DLMA and DL’MA
provide measurably better results.

In the 60s, Blum [7, 8] introduced the notion of medial axis or skeleton, which
has since been the subject of numerous theoretical studies and has also proved its
usefulness in practical applications. Although initially introduced as the outcome
of a propagation process, the medial axis can also be defined in simple geometric
terms. In the continuous Euclidean space, the two following definitions can be
used to formalize this notion: let X be a bounded subset of R

n ;
a) The skeleton of X consists of the centers of the balls that are included in X

but that are not included in any other ball included in X .
b) The medial axis of X consists of the points x ∈ X that have several nearest
points on the boundary of X .
The skeleton and the medial axis differ only by a negligible set of points (see [22]),
in general the skeleton is a strict subset of the medial axis.

In this paper, we focus on medial axes in the discrete grid Z
2 or Z

3, which
are centered in the shape with respect to the Euclidean distance.

A major difficulty when using the medial axis in applications (e.g., shape
recognition), is its sensitivity to small contour perturbations, in other words, its
lack of stability. A recent survey [1] summarizes selected relevant studies dealing
with this topic. This difficulty can be expressed mathematically: the transfor-
mation which associates a shape to its medial axis is only semi-continuous. This
fact, among others, explains why it is usually necessary to add a filtering step
(or pruning step) to any method that aims at computing the medial axis.

Hence, there is a rich literature devoted to skeleton or medial axis pruning,
in which different criteria were proposed in order to discard “spurious” skeleton
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points or branches: see [4, 24, 3, 21, 2, 27, 17, 5, 13], to cite only a few. However,
we lack theoretical justification, that is, a formalized argument that would help
to understand why a filtering criterion is better than another.

In 2005, Chazal and Lieutier introduced the λ-medial axis and studied its
properties, in particular those related to stability [9]. Consider a bounded subset
X of R

n, as for example, for n = 2, the region enclosed by the solid curve
depicted in Fig. 1 (left). Let x be a point in X , we denote by Π(x) the set of
points of the boundary of X that are closest to x. For example in Fig. 1, we
have Π(x) = {a, b}, Π(x′) = {a′, b′} and Π(x′′) = {a′′}. Let λ be a non-negative
real number, the λ-medial axis of X is the set of points x of X such that the
smallest ball including Π(x) has a radius greater than or equal to λ. Notice that
the 0-medial axis of X is equal to X , and that any λ-medial axis with λ > 0 is
included in the medial axis according to definition b). We show in Fig. 1 (right)
two λ-medial axes with different values of λ.

A major outcome of [9] is the following property: informally, for “regular”
values of λ, the λ-medial axis remains stable under perturbations of X that are
small with regard to the Hausdorff distance. Typical non-regular values are radii
of locally largest maximal balls.
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Fig. 1. Illustration of the λ-medial axis. Left: Points x, x′ and x′′ and their respective
closest boundary points. Top right: λ-medial axis with λ = ǫ, a very small positive real
number. Bottom right: λ-medial axis with λ = d(a′, b′) + ǫ.

This property is a strong argument in favor of the λ-medial axis, especially
in the absence of such result for other proposed criteria.

In the discrete grids, namely Z
2 and Z

3, a similar filtering criterion has been
considered in independent works [21, 17]. It consists of selecting for each medial
axis point only two closest boundary points, and using the distance between these
two points as the filtering criterion. The work of Hesselink et al. [17] provides a
linear-time algorithm to compute a filtered medial axis based on this criterion,
which exhibits good noise robustness properties in practice.

In this paper, we introduce the definition of a discrete λ-medial axis (DLMA)
in Z

n. We evaluate experimentally its stability and rotation invariance in 2D. In
this experimental study, we compare it with the previously introduced integer
medial axis [18, 17] and show that the DLMA provides measurably better results.
Furthermore, we introduce a variant of the DLMA which may be computed in



linear time, for which the results are very close to those of the DLMA, and which
is only slightly slower than the one proposed in [17].

1 Discrete λ-medial axis

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, we denote by d(x, y) the Euclidean

distance between x and y, that is, d(x, y) = (
∑n

k=1(yk − xk)2)
1

2 . Let X be a
finite subset of R

n or Z
n. We set d(y, X) = minx∈X{d(y, x)}. We denote by |X |

the number of elements of X , and by X the complement of X .
Let E be either R

n or Z
n. Let x ∈ E, r ∈ R

+, we denote by Br(x) the ball
of radius r centered on x, defined by Br(x) = {y ∈ E | d(x, y) ≤ r}. We also
define B<

r (x) = {y ∈ E | d(x, y) < r}.
For each point x ∈ Z

n, we define the direct neighborhood of x as N(x) = {y ∈
Z

n | d(x, y) ≤ 1}. The direct neighborhood comprises 2n + 1 points.
Let S be a nonempty subset of E, and let x ∈ E. The projection of x on S,

denoted by ΠS(x), is the set of points y of S which are at minimal distance
from x ; more precisely,

ΠS(x) = {y ∈ S | ∀z ∈ S, d(y, x) ≤ d(z, x)}.
If X is a subset of E, the projection of X on S is defined by ΠS(X) =

⋃
x∈X ΠS(x).

In the case of a subset X of Z
n, it may be easily seen that ΠX(X) is composed

of the points of X that are in the direct neighborhood of a point of X , that is,
ΠX(X) = {y ∈ X | N(y) ∩ X 6= ∅}. We call ΠX(X) the (external) boundary
of X .

Let S ⊂ R
n, we denote by R(S) the radius of the smallest ball enclosing S,

that is, R(S) = min{r ∈ R | ∃y ∈ R
n, Br(y) ⊇ S}.

The λ-medial axis may now be defined based on these notions.
Definition 1 ([9]). Let X be an open bounded subset of R

n, and let λ ∈ R
+.

The λ-medial axis of X is the set of points x in X such that R(ΠX(x)) ≥ λ.
We cannot transpose this definition straightforwardly to Z

n. To see why,
consider a horizontal ribbon in Z

2 with constant even width and infinite length.
It can be seen that any point of this set has a projection that is reduced to a
singleton. Hence, if we keep the same definition, any λ-medial axis of this object
with λ > 0 would be empty.

It is the reason why we change the projection for the extended projection
(see [13]).

Let X ⊆ Z
n, and let x ∈ X . The extended projection of x on X, denoted by

Πe

X
(x), is the union of the sets ΠX(y), for all y in N(x) such that d(y, X) ≤

d(x, X).
The last condition (d(y, X) ≤ d(x, X)) is set in order to avoid getting several

medial axis points when only one is sufficient. We are now ready to introduce
the definition of our discrete λ-medial axis.
Definition 2. Let X be a finite subset of Z

n, and let λ ∈ R
+. We define

the function FX which associates, to each point x of X, the value FX(x) =
R(Πe

X
(x)). The discrete λ-medial axis (or DLMA) of X is the set of points x in

X such that FX(x) ≥ λ.



In Fig. 2 (right), we show two examples of DLMAs of a shape X . We also
note that the function FX (displayed on the left of the figure) can be computed
once and stored as a grayscale image, and that any DLMA of X is a threshold of
this function at a particular value λ. More examples are given in Fig. 3. Notice
that DLMA has not, in general, the same topology as the original shape.

Fig. 2. Left: The function FX superimposed to the shape X. Darkest colors represent
highest values of FX(x). Any DLMA of X is a threshold of this function at a particular
value λ. Top right: discrete 10-medial axis. Bottom right: discrete 30-medial axis of X.

2 Integer medial axis

Let us first recall the definition of the integer medial axis [17], which is con-
ceptually close to the DLMA, and defined in the same framework of discrete
grids.

Let X be a subset of Z
n, and let x ∈ X . We denote by Π ′

X
(x) the ele-

ment of ΠX(x) that is smallest with regard to the lexicographic ordering of its
coordinates.
Definition 3 ([17]). Let X be a finite subset of Z

n, and let γ ∈ R
+. The γ-

integer medial axis (or GIMA) of X is the set of points x in X such that
i) ∃y ∈ N(x), d(Π ′

X
(x), Π ′

X
(y)) > γ, and

ii) d(m − Π ′

X
(x)) ≤ d(m − Π ′

X
(y)), where m = x+y

2 .
The integer medial axis of X is the γ-integer medial axis of X for γ = 1.

Notice that the GIMA is not invariant under a permutation of the coordi-
nates.

There are indeed some links between the GIMA and the DLMA. In 2D, in
the case of a point x that is, conceptually, a “regular skeleton point” (neither a



branch extremity nor a branch junction), condition i) is similar to the condition
R(ΠX(x)) ≥ λ in Def. 1.

Condition ii) plays a role analogous to condition d(y, X) ≤ d(x, X) in the
definition of the extended projection, that is to get a thinner axis.

However, these definitions differ, leading to sensible differences in the re-
sults of these two transformations (see Fig. 3). We analyse quantitatively these
differences in Sec. 5.

DLMA

GIMA

Fig. 3. Results of DLMA (first row) and GIMA (second row) for parameter values
yielding similar reconstruction ratios (see Sec. 5).

3 Topology preservation

It is easy to see that a DLMA or a GIMA of a given shape X does not exhibit,
in general, the same homotopy type as X (see e.g. Fig. 3).

In order to guarantee topology preservation, a popular method [14, 29, 28,
25] consists of performing a homotopic thinning of X with the constraint of
retaining the points of its filtered medial axis M , or equivalently, of iteratively
removing simple points [19, 6, 12] from X that do not belong to M . A priority
function is needed in order to specify which points must be considered at each
step of the thinning. In the general case, the choice of this priority function is
not easy (see [28, 13]). In the case of a DLMA, choosing the map FX as priority
function yields satisfying results (see, for example, Fig. 4).

4 Algorithms

The projection ΠX(x), for all points x in X , can be computed in optimal time
and space (that is, in O(N) where N =

∑
x∈X |ΠX(x)|) thanks to an algorithm

due to D. Coeurjolly [13].
In order to avoid computing the map ΠX , which requires a data structure

like an array of lists to store all the sets ΠX(x), we propose a variant of the
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Fig. 4. Results of homotopic thinning of X constrained by the DLMA for parameter
values 20, 40, 60 and 80, and with FX as priority function.

DLMA that consists of replacing ΠX by Π ′

X
in the definition of the extended

projection. We will refer to this variant as the discrete λ′-medial axis (DL’MA).
Notice that the DL’MA, as the GIMA, is not invariant under a permutation
of the coordinates. In our experiments (see Sec. 5), we tried both variants and
found very little difference between their results. One advantage of this variant
is that the map Π ′

X
can be computed in linear time and stored in an array of

integers [10, 23, 17].
The smallest ball enclosing a given set of n points in R

d can be computed in
expected O(n) time if d is considered as a constant, thanks to an algorithm due
to Welzl [30]. This algorithm is simple and easy to implement (see appendix).

For each object point x, the computational cost is in O(n) where n = |Πe

X
(x)|

(see Def. 2). In the variant DL’MA, we have n ≤ 5, since only one projection
point is considered for x and, at worse, each of its four direct neighbors. Hence,
computing the radius of the smallest enclosing ball can be performed in constant
time.

Globally, the DL’MA procedure runs in linear time with regard to the number
of object points.

Thanks to local characterizations, in 2D and 3D, checking whether a point is
simple or not can be done in constant time. The homotopic thinning described
in section 3 may be implemented to run in O(n log n) complexity, where n is the
number of object points, using e.g. a balanced binary tree to store and retrieve
the candidate points and their priority.

5 Results and comparisons

First, let us give some definitions that are useful for describing our experiments
and analyzing their results.

Let X be a finite subset of Z
n. Let Y be a subset of X , we set REDTX(Y ) =⋃

y∈Y B<

d(y,X)
(y). The transformation REDTX is sometimes called reverse Eu-

clidean distance transform [11].
It is well known that any object can be fully reconstructed from its medial

axis, more precisely, we have X = REDTX(M) whenever M is the (exact and
non-filtered) medial axis of X . This property holds if M is the set of the centers
of maximal balls of X , the DLMA of X with λ = 1, or the integer medial axis of
X . However, it is no longer true if we consider filtered medial axes, e.g. DLMA
or GIMA with arbitrary λ or γ.



Then, it is interesting to measure how much information about the original
object is lost when we raise the filtering parameter. We set

LX(λ) =
|X \ REDTX(LMX(λ))|

|X |
, IX(γ) =

|X \ REDTX(IMX(γ))|

|X |
,

where LMX(λ) is the DLMA of X and IMX(γ) is the GIMA of X . In words,
LX(λ) (resp. IX(γ)) is the area of the difference between X and the set recon-
structed from its DLMA (resp. GIMA), divided by the area of X . We call LX(λ)
and IX(γ) the (normalized) residuals corresponding to filtering values λ and γ,
respectively.

Fig. 5 shows the evolution of the residuals for the GIMA, DLMA and DL’MA.
Since some differences may not be negligible, to ensure a fair evaluation we will
compare the results of both methods for approximately equal values of their
residuals, rather than for equal values of their parameters.
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Fig. 5. Residuals LX(λ) (2 variants) and IX(γ), for the set X depicted in Fig. 2.
Horizontal axis: the value of the parameter (λ or γ). Vertical axis: the value of the
residual. Notice that curves corresponding to DLMA and DL’MA are superimposed.

For comparing shapes or medial axes, we use the Hausdorff distance (see be-
low), and also a dissimilarity measure proposed by Dubuisson and Jain [15]. The
drawback of Hausdorff distance for measuring shape dissimilarity is its extreme
sensibility to outliers, the latter measure avoids this drawback.

Let X, Y be two subsets of R
n. We set

H(X |Y ) = max
x∈X

{min
y∈Y

{d(x, y)}},

and dH(X, Y ) = max{H(X |Y ), H(Y |X)} is the Hausdorff distance between X

and Y . We set

D(X |Y ) =
1

|X |

∑

x∈X

min
y∈Y

{d(x, y)},

and dD(X, Y ) = max{D(X |Y ), D(Y |X)} is the Dubuisson and Jain’s dissimi-
larity measure between X and Y (called dissimilarity in the sequel for the sake
of brevity).



We conducted our experiments on a database of 216 shapes provided by B.B.
Kimia [26]. The 216 images are divided into 18 classes (birds, cars, etc.), Fig. 6
shows one (reduced) image of each class.

Fig. 6. A sample of the 216 shapes of Kimia’s database.

5.1 Stability

Skeletons are notoriously sensitive to border noise. Since the λ-medial axis is
supposed to cope reasonably well with shape deformation, it is useful to test
how it fares in practice.

To introduce noise to the boundary of an object we propose deforming it
using a process derived from the Eden accretion process [16]. The Eden process
is an iterative random cellular automaton which, in its simplest form, attributes
an equal probability to all the outer border points to be set to 1 at each step.
That is, at each step, a neighbour of the object is chosen randomly and added to
the shape. In spite of its simplicity, the Eden process exhibits good asymptotic
isotropy [20]. In our process, we combined an Eden step of accretion with an
opposite step of reduction, where a random pixel belonging to the inner border
is turned to zero (i.e. set to belong to the background). In addition, we required
both accretion and diluvion steps to concern only simple points. This way at
each step the object’s area remains constant and retains the homotopy type of
the original.

We denote by E(X, n) the result of applying n steps of this process to the
shape X . In this experiment, we compare the (filtered) medial axis of an original
shape with the one of a deformed shape.

0 50 100 150 200

Fig. 7. Illustration of the border deformation process, after 0 (original image), 50, 100,
150 and 200 steps. The function FX is superimposed to each shape X.



50 100 150 200 all

GIMA 5.52 6.58 7.09 7.59 6.70

DLMA 5.37 6.31 6.81 7.32 6.45

DL’MA 5.35 6.32 6.79 7.32 6.45

Table 1. Hausdorff distance.

50 100 150 200 all

GIMA .551 .772 .889 1.016 .807

DLMA .547 .763 .881 .998 .797

DL’MA .551 .768 .885 1.004 .802

Table 2. Dissimilarity.

In Table 1 (resp. Table 2) we give the average Hausdorff distance (resp.
dissimilarity) between M(X) and M(E(X, n)) on the 216 shapes of Kimia’s
database, for parameter values γ, λ, λ′ varying from 1 to a value giving 30%
residual. Results are given for values 50, 100, 150, 200 of n and all results aver-
aged together. Results indicate a slight advantage of λ- and λ′-medial axes over
the integer medial axis.

5.2 Rotation invariance

Rotation invariance is an important property of the medial axis that holds in the
continuous framework. If Rθ denotes the rotation of angle θ and center 0, and M

denotes the medial axis transform, the rotation invariance property states that
M(Rθ(X)) = Rθ(M(X)), whatever X and θ.

In a discrete framework, this property can only hold for particular cases (e.g.,
when θ is a multiple of 90 degrees). Nevertheless, we can experimentally measure
the dissimilarity between M(Rθ(X)) and Rθ(M(X)) for different instances, and
different definitions of the medial axis. The lower this dissimilarity, the more
stable under rotation the method is.

Fig. 8 and Fig. 9 show detailed results of such experiments. We used a rotation
by interpolation algorithm, followed by a threshold. We adjusted the parameters
λ and γ such that the residuals for each axis were approximately 1%, 3% and
5%.
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Fig. 8. Hausdorff distance between M(Rθ(X)) and Rθ(M(X)), for residual values 1%,
3%, 5%. Horizontal axis: θ. Vertical axis: Hausdorff distance.

For each shape of Kimia’s database, we computed the Hausdorff distance and
the dissimilarity between M(Rθ(X)) and Rθ(M(X)) for values of the parameters
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Fig. 9. Dissimilarity between M(Rθ(X)) and Rθ(M(X)), for residual values 1%, 3%,
5%. Horizontal axis: θ. Vertical axis: Dissimilarity.

yielding 1%, 2%, 3%, 4%, 5% and 6% residuals, and for rotation angles varying
from 0 to 89 degrees by 1 degree steps.

The results are summarized in Tables 3 and 4. In Table 3 (resp. Table 4) we
give the average Hausdorff distance (resp. dissimilarity) between M(Rθ(X)) and
Rθ(M(X)) on the 216 shapes of Kimia’s database, for θ varying from 0 to 89
degrees, and for residual values 1%, 2%, 3%, 4%, 5%, 6% and all values together.
We see that the average dissimilarity or Hausdorff distance is almost always less
for the DLMA (or DL’MA) than for the integer medial axis, around 15% less
in the mean. The difference between both methods is more important (greater
than 20%) for parameter values yielding highest residuals.

2% 4% 6% all

GIMA 6.76 6.59 7.34 6.94

DLMA 6.17 5.48 5.71 6.03

DL’MA 6.17 5.43 5.71 5.99

Table 3. Hausdorff distance.

2% 4% 6% all

GIMA .620 .628 .796 .677

DLMA .563 .480 .580 .559

DL’MA .566 .479 .602 .557

Table 4. Dissimilarity.

5.3 Computing time

In Fig. 10, we show the results of computing time measurements that we per-
formed on an Intel Core 2 Duo processor at 1.83 GHz. Computing times for the
GIMA are the lowest, but DL’MA is only slightly slower (and also linear).

6 Conclusion

In this paper, we introduced the definition of a discrete λ-medial axis (DLMA)
and compared it with the integer medial axis. We showed the DMLA provides
good robustness to boundary noise and invariance by rotation in practice. We
proposed an improved DM’LA algorithm with linear complexity. Future work
will include a more thorough study of rotational invariance and border noise
robustness, both in 2D and 3D, including comparison with traditional pruning.
We will also study in more details the relationship of the DLMA to the discrete
bisector function [28, 13] and application of this work to shape classification and
object splitting.
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Appendix

The following recursive function, introduced and analyzed in [30], computes the
smallest ball enclosing the set of points P , and having the points of the set R

on its boundary. The initial call is done with R = ∅. The result B is made of the
center and the radius of the enclosing ball.

Algorithm 1: Function SmallestEnclosingBall(P, R)

Data : P ⊆ R
d, R ⊆ R

d

if P = ∅ [or |R| = d + 1] then compute B directly;
else

choose p ∈ P at random;
B = SmallestEnclosingBall(P \ {p}, R);
if [B defined and] p /∈ B then B = SmallestEnclosingBall(P \ {p}, R∪{p});

return B;


