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Abstract

Medial axes and skeletons are notoriously sensitive to contour irregularities.
This lack of stability is a serious problem for applications in e.g. shape analysis
and recognition. In 2005, Chazal and Lieutier introduced the λ-medial axis
as a new concept for computing the medial axis of a shape subject to single
parameter filtering. The λ-medial axis is stable under small shape perturbations,
as proved by these authors. In this article, a discrete λ-medial axis (DLMA)
is introduced and compared with the recently introduced integer medial axis
(GIMA). We show that DLMA provides measurably better results than GIMA,
with regard to stability and sensibility to rotations. We give efficient algorithms
to compute the DLMA, and we also introduce a variant of the DLMA which
may be computed in linear-time.

Introduction

The notion of medial axis has been introduced by Blum in the 60s [7, 8]. It
has proved its usefulness in many practical applications, and numerous works
were devoted to its properties and implementations. The original definition of
the medial axis by Blum was based on a fire propagation analogy. However, its
simplest definitions only require elementary geometry. In the continuous Eu-
clidean space, the two following definitions can be used to formalise this notion:
let X be a bounded subset of R

n ;
- Interpretation (a) of the medial axis of X consists of the centers of the n-
dimensional balls that are included in X but that are not included in any other
n-dimensional ball included in X .
- Interpretation (b) of the medial axis of X consists of the points x ∈ X that
have more than one nearest points on the boundary of X .
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These two definitions differ only by a negligible set of points (see [28]), in gen-
eral interpretation (a) of the medial axis is a strict subset of interpretation (b).
Notice that in some works, the term “skeleton” is used to refer to both interpre-
tations, especially in the continuous framework. In this paper, we shall restrict
the use of this term to the cases where the skeleton is topologically equivalent
to the original shape.

To compute the medial axis approximately or exactly, different methods
have been proposed, relying on different frameworks: discrete geometry [9, 21,
27, 32, 22], digital topology [18, 40, 39, 31], mathematical morphology [34, 37],
computational geometry [2, 30, 3], partial differential equations [36], and level-
sets [24]. In this paper, we focus on medial axes in the discrete grid Z

2 or Z
3,

which are centered in the shape with respect to the Euclidean distance.
A major difficulty when using the medial axis in applications (e.g., shape

recognition), is its sensitivity to small contour perturbations, in other words, its
lack of stability. A recent survey [1] summarises selected relevant studies dealing
with this topic. This difficulty can be expressed mathematically: the transfor-
mation which associates a shape to its medial axis is only semi-continuous. This
fact, among others, explains why it is usually necessary to add a filtering step
(or pruning step) to any method that aims at computing the medial axis.

Hence, there is a rich literature devoted to medial axis pruning, in which dif-
ferent criteria were proposed in order to discard “spurious” medial axis points or
branches: see Attali et al. [4], Ogniewicz and Kübler [30], Attali and Montanvert
[3], Malandain and Fernández-Vidal [27], Attali and Lachaud [2], Svensson and
Sanniti di Baja [38], Bai et al. [5], Couprie et al. [17], Hesselink and Roerdink
[22], to cite only a few. However, we lack theoretical justification, that is, a
formalised argument that would help to understand why a filtering criterion is
better than another.

In 2005, Chazal and Lieutier introduced the λ-medial axis and studied its
properties, in particular those related to stability [12]. Consider a bounded
subset X of R

n, as for example, for n = 2, the region enclosed by the solid
curve depicted in Fig. 1 (left). Let x be a point in X , we denote by Π(x) the set
of points of the boundary of X that are closest to x. For example in Fig. 1, we
have Π(x) = {a, b}, Π(x′) = {a′, b′} and Π(x′′) = {a′′}. Let λ be a non-negative
real number, the λ-medial axis of X is the set of points x of X such that the
smallest n-dimensional ball1 including Π(x) has a radius greater than or equal
to λ. Notice that the 0-medial axis of X is equal to X , and that any λ-medial
axis with λ > 0 is included in the medial axis according to definition b). We
show in Fig. 1 (right) two λ-medial axes with different values of λ.

A major outcome of Chazal and Lieutier [12] is the following property: in-
formally, for “regular” values of λ, the λ-medial axis remains stable under per-
turbations of X that are small with respect to the Hausdorff distance. Typical
non-regular values are radii of locally largest maximal n-dimensional balls.

This property is a strong argument in favor of the λ-medial axis, especially

1The center of this ball is also the projection of x onto the convex hull of Π(x) (see [11]).
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in the absence of such result for other proposed criteria.
In the field of computational geometry, the λ-medial axis has been exploited

in particular by Samozino et al. [33] to propose a robust method for reconstruct-
ing surfaces from point clouds. Also, notions closely related to the λ-medial axis
have led Chazal et al. to propose stable approximations of tangent planes and
normal cones from noisy samples [11].

a

b x’’

a’’

a’ b’

x
x’

Figure 1: Illustration of the λ-medial axis. Left: Points x, x′ and x′′ and their respective
closest boundary points. Top right: λ-medial axis with λ = ǫ, a very small positive real
number. Bottom right: λ-medial axis with λ = d(a′, b′)/2 + ǫ.

In the discrete grids, namely Z
2 and Z

3, a similar filtering criterion has been
considered in independent works [27, 22]. It consists of selecting for each medial
axis point two of its closest boundary points, and using the distance between
these two points as filtering criterion. The work of Hesselink and Roerdink [22]
provides a linear-time algorithm to compute a filtered medial axis based on this
criterion, which exhibits good noise robustness properties in practice.

In this article (which extends Chaussard et al. [10], a preliminary version
published in the DGCI conference proceedings), we introduce the definition of a
discrete λ-medial axis (DLMA) in Z

n. We evaluate experimentally its stability
and rotation invariance in 2D and 3D. In this experimental study, we compare
it with the previously introduced integer medial axis (GIMA) [23, 22] and show
that the DLMA provides measurably better results. Furthermore, we introduce
a variant of the DLMA which may be computed in linear time, for which the
results are very close to those of the DLMA, and which is only slightly slower
than the one proposed by Hesselink and Roerdink [22].

1. The λ-medial axis

Let us first recall the original definition of the λ-medial axis given by Chazal
and Lieutier.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, the Euclidean distance between

x and y is denoted by d(x, y), in other terms, d(x, y) = (
∑n

k=1(yk − xk)2)
1

2 .
Let X be a finite subset of R

n or Z
n. We set d(y, X) = minx∈X{d(y, x)}. We

denote by |X | the number of elements of X , and by X the complement of X .
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Let E be either R
n or Z

n. Let x ∈ E, r ∈ R
+, we denote by Br(x) the

n-dimensional ball (or ball for simplicity) of radius r centered on x, defined by
Br(x) = {y ∈ E | d(x, y) ≤ r}. We also define B̊r(x) = {y ∈ E | d(x, y) < r}.

Let X ⊆ E. A ball Br(x) ⊆ X is maximal for X if it is not strictly included
in any other ball included in X . The Euclidean medial axis of X , denoted by
EMA(X), is the set of the centers of all the maximal balls for X .

Let S be a non-empty subset of E, and let x ∈ E. The projection of x on S,
denoted by ΠS(x), is the set of points y of S which are at minimal distance
from x ; more precisely,

ΠS(x) = {y ∈ S | ∀z ∈ S, d(y, x) ≤ d(z, x)}.
If X is a subset of E, the projection of X on S is defined by ΠS(X) =⋃

x∈X ΠS(x).
Let S ⊂ R

n, we denote by R(S) the radius of the smallest ball enclosing S,
that is, R(S) = min{r ∈ R | ∃y ∈ R

n, Br(y) ⊇ S}.
The λ-medial axis may now be defined based on these notions.

Definition 1 (Chazal and Lieutier [12]). Let X be an open bounded subset
of R

n, and let λ ∈ R
+. The λ-medial axis of X is the set of points x in X such

that R(ΠX(x)) ≥ λ.

2. A discrete λ-medial axis

Transposing the original definition of the λ-medial axis directly to Z
n would

lead to an unsatisfactory result. For instance, consider a horizontal ribbon in
Z

2 with constant, even width and infinite length. Clearly, the projection of any
point of this set on its complementary set is reduced to a singleton. This is
why, if we keep the same definition, any λ-medial axis of this object with λ > 0
would be empty.

In order to avoid such unwanted behaviour, we replace the projection by
the so-called extended projection [17]. The extended projection was originally
introduced in order to propose a discrete definition of the bisector function,
another indicator used to filter skeletons.

For each point x ∈ Z
n, we define the direct neighborhood of x as N(x) =

{y ∈ Z
n | d(x, y) ≤ 1}. The direct neighborhood comprises 2n + 1 points.

The set ΠX(X) is composed of the points of X that are in the direct neigh-
borhood of a point of X , that is, ΠX(X) = {y ∈ X | N(y) ∩ X 6= ∅}. We call
ΠX(X) the (external) boundary of X .

Let X ⊆ Z
n, and let x ∈ X . The extended projection of x on X, denoted by

Πe

X
(x), is the union of the sets ΠX(y), for all y in N(x) such that

d(y, X) ≤ d(x, X). (condition 1)

Using the extended projection allows us to cope with the problem pointed out
previously. Considering the example of an horizontal ribbon in Z

2 with constant
even width and infinite length, points close to the “middle” of the ribbon will
each have an extended projection consisting of a pair of points. Informally, the
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extended projection permits to “see” both sides of the object from a point x

close to the “middle” of the object, whereas only one side is taken into account
when considering the projection.

As illustrated in Fig. 2, condition 1 avoids producing multiple medial axis
points when only one is sufficient, in other words, it yields a thinner axis ac-
cording to definition 2.

Fig. 2 helps us to illustrate this definition and the following one. Consider the
object X (white pixels) depicted in Fig. 2a, and the two pixels x, y in X . Fig. 2b
shows the squared Euclidean distance map of X , that is, the value in each pixel
is the square Euclidean distance between this pixel and the nearest background
pixel. We can see that d(x, X) = 4 and d(y, X) = 5. The projection of x (resp.
y) on X is {b} (resp. {d}). We have Πe

X
(x) = {a, b, c}, and Πe

X
(y) = {d, b, c}.

We are now ready to introduce the definition of our discrete λ-medial axis.

Definition 2. Let X be a finite subset of Z
n, and let λ ∈ R

+. We define
the function FX which associates, to each point x of X, the value FX(x) =
R(Πe

X
(x)). The discrete λ-medial axis (or DLMA) of X is the set of points x

in X such that FX(x) ≥ λ.

Back to our illustration in Fig. 2, the function FX is displayed in Fig. 2c and
the 4-medial axis of X (threshold of FX for λ = 4) is displayed in Fig. 2d. Notice
that the function FX can be computed once and stored in an n-dimensional array
(a grayscale image), and that any DLMA of X is obtained by thresholding the
values of this array at a particular value λ.

In Fig. 2e, we show how the function FX would look like if we omit condi-
tion 1 from the definition of the extended projection. In this case, the extended
projection of x would be {a, b, c, d} instead of {a, b, c}, this explains the higher
value of FX(x). Fig. 2f shows how the 4-medial axis of X would be.

In Fig. 3(b,c), we show two examples of DLMAs of a bigger shape. More
examples are given in Fig. 4 and Fig. 5. Notice that DLMA in general does not
exhibit the same topological characteristics as the original shape.

3. The integer medial axis

The integer medial axis was introduced by [22]. Conceptually, this notion is
close to the DLMA, and also defined in the framework of discrete grid Z

n.
Let X ⊂ Z

n, and x ∈ X . We define Π′

X
(x) as the element of ΠX(x) that is

the smallest with respect to the lexicographic ordering of its coordinates.

Definition 3 (Hesselink and Roerdink [22]). Let X be a finite subset of
Z

n, and let γ ∈ R
+. The γ-integer medial axis (or GIMA) of X is the set of

points x in X such that at least one y ∈ N(x) verifies :
i) d(Π′

X
(x), Π′

X
(y)) > γ, and

ii) d(m − Π′

X
(y)) ≤ d(m − Π′

X
(x)), where m = x+y

2 .
The integer medial axis of X is the γ-integer medial axis of X for γ = 1.
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(a)

x
y

ba

d

c

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

0 1 4 2 1 1 1 0 0 0 0 0

0 1 4 5 4 4 2 1 1 1 0 0

0 1 2 4 4 5 5 4 4 2 1 0

0 0 1 1 1 2 4 4 5 4 1 0

0 0 0 0 0 1 1 1 2 4 1 0

0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 (b)

(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 2.8 4.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 3.2 4.5 1.4 1.0 3.2 2.2 0.0 0.0 0.0 0.0 0.0

0.0 3.2 5.1 5.4 5.1 3.2 1.4 1.0 3.2 2.2 0.0 0.0

0.0 2.2 2.8 3.2 5.1 5.2 5.2 5.1 3.2 2.8 2.2 0.0

0.0 0.0 2.2 3.2 1.0 1.4 3.2 5.1 5.4 5.1 3.2 0.0

0.0 0.0 0.0 0.0 0.0 2.2 3.2 1.0 1.4 4.5 3.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 4.0 2.8 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (d)

(e)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 2.8 4.1 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 3.6 4.5 4.1 1.0 3.2 2.2 0.0 0.0 0.0 0.0 0.0

0.0 3.2 5.2 5.4 5.1 5.3 2.2 1.0 3.2 2.2 0.0 0.0

0.0 2.2 4.2 5.3 5.1 5.2 5.2 5.1 5.3 4.2 2.2 0.0

0.0 0.0 2.2 3.2 1.0 2.2 5.3 5.1 5.4 5.2 3.2 0.0

0.0 0.0 0.0 0.0 0.0 2.2 3.2 1.0 4.1 4.5 3.6 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 4.1 2.8 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (f)

(g)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 2.8 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 3.2 4.5 1.4 1.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 2.0 5.1 5.4 5.1 3.2 1.4 1.0 2.0 1.0 0.0 0.0

0.0 1.0 1.4 3.2 5.1 5.2 5.2 5.1 3.2 1.4 2.2 0.0

0.0 0.0 2.2 3.2 1.0 0.0 3.2 5.1 5.4 3.2 3.2 0.0

0.0 0.0 0.0 0.0 0.0 2.2 3.2 1.0 0.0 4.5 2.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 4.0 2.8 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (h)

(i)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 2.2 1.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 3.6 0.0 1.0 1.0 1.4 0.0 0.0 0.0 0.0 0.0

0.0 1.0 4.5 5.1 5.0 2.2 0.0 1.0 1.0 1.4 0.0 0.0

0.0 1.4 0.0 2.2 1.0 5.0 5.1 5.0 2.2 0.0 2.2 0.0

0.0 0.0 2.2 1.0 1.0 0.0 2.2 1.0 4.5 4.5 1.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 1.0 1.0 0.0 4.1 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 2.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (j)

Figure 2: (a): An object X (white pixels). We have Πe

X
(x) = {a, b, c}, and Πe

X
(y) = {d, b, c}.

(b): The squared Euclidean distance map of X. (c): The function FX (truncated to the first
decimal). (d): The λ-medial axis of X, for λ = 4 (black disks). (e,f): Same as (c,d) assuming
that condition 1 is omitted from the definition of the extended projection. (g): The map, for
each x ∈ X, of the minimal value λ such that x ∈ λ′-medial axis of X. (h): The λ′-medial
axis of X, for λ′ = 4 (black disks). (i,j): Same as (g,h) for the integer medial axis.
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(a) (b) (c)

Figure 3: (a): The function FX superimposed to the shape X. Darkest colors represent
highest values of FX(x). Any DLMA of X is a threshold of this function at a particular
value λ. (b): Discrete 5-medial axis. (c): discrete 10-medial axis of X.

Notice that the GIMA is not invariant under coordinate permutation.
There are indeed some links between the GIMA and the DLMA. In 2D, in the

case of a point x that is, conceptually, a “regular medial axis point” (neither a
branch extremity nor a branch junction), condition i) is similar to the condition
R(ΠX(x)) ≥ λ in Def. 1.

Condition ii) plays a role analogous to condition d(y, X) ≤ d(x, X) in the
definition of the extended projection, that is to get a thinner axis.

However, these definitions differ, leading to sensible differences in the results
of these two transformations (see Fig. 5). For example, in definition 3, Π′

X
(x)

is the only element of the projection ΠX(x) that is taken into account into the
computation of the integer medial axis of X , while all the elements of Πe

X
(x) are

taken into account into the computation of the lambda medial axis. Moreover,
in definition 3, the result depends on the longest distance between two elements
of the (reduced) projection, while in definition 2, the result depends on the size
of the smallest ball including the whole projection.

Generally speaking, one can say that the lambda medial axis “takes into
account” more elements than the integer medial axis. We analyse quantitatively
the consequences of these differences in Sec. 7 and Sec. 8. These differences lead
to different axes, as illustrated on Fig. 2.

4. Topology preservation issues

The illustration on Fig. 5 (right) is sufficient to demonstrate that a DLMA
or a GIMA of a given shape X may have a homotopy type different from the
one of X .

Nearly identical methods for filtering a medial axis while preserving homo-
topy were proposed by several authors [18, 40, 39, 31]. They consist of iteratively
removing simple points [25, 6, 16] from the shape X , that do not belong to the
set M of its medial axis points (called constraint set). A priority function is
needed in order to specify which points must be considered at each step of the
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Figure 4: Top-right: The function FX superimposed to the top-left shape X. Red color
represents highest values of FX(x), and blue color represents lowest ones. Bottom left: discrete
11-medial axis. Bottom right: discrete 15-medial axis of X.

thinning. In the general case, the choice of this priority function is not obvious
[39, 17].

An example is shown on Fig. 6, where the filtered DLMA of an object is
used as a constraint set during skeletonization. Choosing the exact Euclidean
distance map as a priority function for removing simple points from the object
may lead to geometric distortions [39]. In some cases, ”extra branches” may
even appear (see Fig. 6b). Choosing the map FX as priority function yields
more satisfying results (see Fig. 6c), as it guides the thinning process towards
elements that belong to the different nested discrete λ-medial axes.

5. Implementation issues

In this section, we discuss the algorithms that should be used in order to effi-
ciently implement DLMA, and we indicate their complexity. We also introduce
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Figure 5: Results of DLMA (first row) and GIMA (second row) for parameter values yielding
similar reconstruction ratios (see Sec. 6).

(a) (b) (c)

Figure 6: (a): The original object X (in white). (b): Result of the skeletonization using the
distance map as a priority function, and a filtered DLMA as constraint set. (c): Result of the
skeletonization using FX as a priority function, and a filtered DLMA as constraint set (same
set than in b).

a variant of the DLMA that can be computed in linear time.
The set of all projections ΠX(x), for all x ∈ X , can be computed in optimal

time and space (that is, in O(n) where n =
∑

x∈X |ΠX(x)|), thanks to an
algorithm introduced by Coeurjolly in [17]. After this, to compute the extended
projection of a particular point x, we just have to perform the union of the
projections of all points y in N(x) that satisfy condition 1.

In order to avoid computing the map ΠX , which requires a data structure like
an array of lists to store all the sets ΠX(x), we propose a variant of the DLMA
that consists of replacing ΠX by Π′

X
in the definition of the extended projec-

tion. We refer to this variant as the discrete linear λ-medial axis (DLLMA):
it is illustrated on Fig. 2g and h. Notice that the DLLMA, as the GIMA, is
not invariant under a permutation of the coordinates (on the contrary of the
DLMA). One advantage of this variant is that the map Π′

X
can be computed in

linear time and stored in an array of integers [13, 29, 22]. We included DLLMA
in our experimental comparative evaluation (see Sec. 7 and Sec. 8).
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5 10 20 30

Figure 7: Results of homotopic thinning of X constrained by the DLMA for parameter values
5, 10, 20 and 30, and with FX as priority function.

The smallest d-dimensional ball enclosing a given set of n points in R
d can

be computed in expected O(n) time if d is considered as a constant, thanks
to an algorithm proposed by Welzl [41]. This algorithm is simple and easy to
implement.

For each object point x, the computational cost is in O(n) where n = |Πe

X
(x)|

(see Def. 2). In the variant DLLMA, we have n ≤ 5, since only one projection
point is considered for x and each of its four direct neighbors, at worse. Hence,
computing the radius of the smallest enclosing d-dimensional ball can be per-
formed in constant time.

Overall, the DLLMA procedure runs in linear time with regard to the number
of object points.

Using local characterisations, in 2D and 3D, checking whether a point is
simple or not can be done in constant time. The homotopic thinning described
in section 4 may be implemented to run in O(n log n) complexity, where n is the
number of object points, using e.g. a balanced binary tree to store and retrieve
the candidate points and their priority.

6. Methodology for the comparison of medial axes

In order to compare the robustness of DLMA, DLLMA and GIMA, we mea-
sure the dissimilarity between the medial axis of a shape X and the one of a
shape X ′ derived from X by a small perturbation. In Sec. 7 this perturbation is
obtained through a random process altering the contour of X , and in Sec. 8 it is
obtained via a discrete rotation. We also include in this comparison the filtered
Euclidean Medial Axis (EMA) defined as the set of the centers of maximal balls
that have a radius greater than a parameter ρ.

We first introduce some notions that will help us to ensure a fair comparison
between methods, for which the filtering parameter does not have the same
meaning.

Let X be a finite subset of Z
n. Let Y be a subset of X , we set REDTX(Y ) =⋃

y∈Y B̊d(y,X)(y). The transformation REDTX is sometimes called reverse Eu-

clidean distance transform [14, 15].
It is well known that any object can be fully reconstructed from its medial

axis, more precisely, we have X = REDTX(M) whenever M is the (exact and
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non-filtered) medial axis of X . This property holds if M is the set of the centers
of all maximal balls of X (EMA of X with ρ = 0), the DLMA of X with λ = 1,
or the integer medial axis of X with γ = 1. However, it is no longer true if we
consider filtered medial axes, e.g. EMA, DLMA or GIMA with arbitrary ρ, λ

or γ.
Then, it is interesting to measure how much information about the original

object is lost when we raise the filtering parameter. We set

LX(λ) =
|X \ REDTX(LMX(λ))|

|X |

where LMX(λ) is the DLMA of X . In other words, LX(λ) is the area of the
difference between X and the set reconstructed from its DLMA, divided by
the area of X . We call LX(λ) the (normalised) residuals of the DLMA of X

filtered at value λ. The same way, we define L′
X(λ′) (resp. IX(γ), MX(ρ)) as

the (normalised) residuals of the DLLMA (resp. GIMA, EMA) of X filtered at
value λ′ (resp. γ, ρ).

Fig. 8 shows the evolution of the residuals for the EMA, GIMA, DLMA and
DLLMA for a given shape. Since differences are not negligible, to ensure a fair
evaluation we compare the results of methods for approximately equal values of
their residuals, rather than for equal values of their parameters.

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30 35 40 45 50

R
e

s
id

u
a

l

Filtering parameter

DLMA

DL’MA

GIMA

Euclidean medial axis

Figure 8: Residuals LX(λ) (2 variants) and IX(γ), for the set X depicted in Fig. 3. Horizontal
axis: the value of the parameter (λ or γ). Vertical axis: the value of the residual. Notice that
curves corresponding to DLMA and DLLMA are superimposed.

For comparing shapes or medial axes, we use the Hausdorff distance (see be-
low), and also a dissimilarity measure proposed by Dubuisson and Jain [19]. The
drawback of Hausdorff distance for measuring shape dissimilarity is its extreme
sensibility to outliers, the latter measure performing better in this respect.

Let X, Y be two subsets of R
n. We set

H(X |Y ) = max
x∈X

{min
y∈Y

{d(x, y)}},

11



and dH(X, Y ) = max{H(X |Y ), H(Y |X)} is the Hausdorff distance between X

and Y . We set

D(X |Y ) =
1

|X |

∑

x∈X

min
y∈Y

{d(x, y)},

and dD(X, Y ) = max{D(X |Y ), D(Y |X)} is the Dubuisson and Jain’s dissimi-
larity measure between X and Y (called dissimilarity in the sequel for the sake
of brevity).

7. Stability

In this section, we compare the stability of DLMA, DLLMA, GIMA and
EMA with respect to contour noise.

We based our 2D experiments on Kimia’s database of 216 shapes [35]. For
the 3D case, we used 20 three-dimensional objects gathered on the Internet or
that we created ourselves. Fig. 9 shows a sample of these shapes .

Figure 9: A sample of the 216 shapes of Kimia’s database, and of the 3d shapes from our
database.

Medial axes are notoriously sensitive to border noise. Since the λ-medial
axis is supposed to cope reasonably well with shape deformation, it is useful to
test how it fares in practice.

To introduce noise to the boundary of an object we propose deforming it
using a process derived from the Eden’s (accretion) process [20]. The Eden’s
process is an iterative random cellular automaton which, in its simplest form,
attributes an equal probability to all the outer border points to be set to 1 at
each step. That is, at each step, a neighbour of the object is chosen randomly
and added to the shape. In spite of its simplicity, the Eden’s process exhibits
good asymptotic isotropy [26]. In our process, we required accretion steps to
deal only with simple points. This way at each step, the object’s homotopy type
remains unchanged.

12



We denote by E(X, n) the result of applying n steps of this process to the
shape X . In this experiment, we compare the (filtered) medial axis of an original
shape with the one of a deformed shape.

0 50 100 200 400

Figure 10: Illustration of the border deformation process, after 0 (original image), 50, 100,
200 and 400 steps. The function FX is superimposed to each shape X.

2D 3D
Noise 3% 6% 9% all 3% 6% 9% all
EMA 6.97 8.78 9.88 7.58 7.07 7.42 7.72 6.92

GIMA 6.30 8.05 8.97 6.77 7.75 8.46 8.77 7.56
DLMA 5.61 7.57 8.32 6.23 5.17 6.01 6.78 5.36

DLLMA 5.89 8.05 9.00 6.66 4.92 5.97 7.72 5.61

Table 1: Average Hausdorff distance between M(X) and M(E(X, n)). Noise level (parameter
n) is expressed as a percentage of object area, results shown are averages of all tested residuals.
Lowest values are highlighted.

2D 3D
Noise 3% 6% 9% all 3% 6% 9% all
EMA 1.01 1.42 1.75 1.21 0.39 0.52 0.60 0.44

GIMA 1.32 1.83 2.20 1.53 0.80 0.99 1.11 0.85
DLMA 1.02 1.51 1.75 1.23 0.28 0.37 0.43 0.31

DLLMA 1.12 1.66 1.94 1.36 0.28 0.36 0.44 0.31

Table 2: Average dissimilarity between M(X) and M(E(X, n)). Noise level (parameter n) is
expressed as a percentage of object area, results shown are averages of all tested residuals.
Lowest values are highlighted.

In Table 1 (resp. Table 2) we give the average Hausdorff distance (resp.
dissimilarity) between M(X) and M(E(X, n)) on the 216 shapes of Kimia’s
database and the 20 shapes of our 3d database for different definitions of M

(filtered EMA, GIMA, DLMA or DLLMA of X). Filtering parameters ρ, γ, λ

and λ′ were chosen in order to give a residual varying from 5% to 30% in 2d,
and a residual varying from 3% to 10% in 3d. Results are given for values of n

equal to 3%, 6% and 9% of object’s surface/volume (values shown are averages
of results obtained for all tested residuals), and the last column indicates all the
results averaged together.
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Note that the tested residual values are not the same in the 2d and 3d
case. Indeed, in 3d, choosing a residual higher than 10% gives a medial axis
which contains very little information about the original object (surfacic parts
are mostly deleted). We constrained our study to medial axes holding enough
information on the original objects, and ignored residual superior to 10% in the
3d case.

On Fig. 11, we show the evolution of the Hausdorff distance and the dis-
similarity between M(X) and M(E(X, n)) against the quantity of noise added
to the shape, for DLMA, DLLMA, GIMA and EMA algorithms. The results
shown are average of the results obtained on the 216 shapes of Kimia’s 2D image
database. Fig. 12 shows the same experimental results on the 20 shapes of our
3d database.

As we expected, DLMA fares better on the average than other axes, with
regard to Hausdorff distance criterion. Its faster variant DLLMA ranks second.
According to the dissimilarity criterion, DLMA and DLLMA yield the best
results in 3d, and in 2d, DLMA performs nearly as well as EMA.
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Figure 11: Hausdorff distance (on the left) and dissimilarity measure (on the right) between
M(X) and M(E(X, n)) on the 216 shapes of Kimia’s 2D image database for residual values
15% and 30%. Noise level (parameter n) is expressed as a percentage of object area.
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Figure 12: Hausdorff distance (on the left) and dissimilarity measure (on the right) between
M(X) and M(E(X, n)) on the 20 shapes of our 3D image database for residual values 3%,
5%. Noise level (parameter n) is expressed as a percentage of object area. When the DLMA
curve is not visible, it is superimposed with DLLMA curve.

8. Sensitivity to rotations

In the continuous framework, it is well known that the medial axis is a
rotation-invariant shape descriptor. More precisely, if we denote by Rθ the
rotation of angle θ about the origin, and by M the medial axis transform, the
rotation invariance property states that M(Rθ(X)) = Rθ(M(X)), whatever the
shape X and the angle θ.

In a discrete framework, this property holds only in particular cases (e.g.,
when θ is a multiple of 90 degrees). Nevertheless, we can experimentally measure
the dissimilarity between M(Rθ(X)) and Rθ(M(X)) for different instances, and
different definitions of the medial axis. The lower this dissimilarity, the more
stable under rotation the method is.

For each shape of Kimia’s database and of our database, we computed the
Hausdorff distance and the dissimilarity between M(Rθ(X)) and Rθ(M(X)) for
values of the parameters yielding 5%, 10%, 15%, 20%, 25% and 30% residuals,
and for rotation angles varying from 0 to 90 degrees by 3 degrees steps. In
3d, rotations were successively performed around the Y and Z axis. Moreover,
in 3d, only parameters yielding 3%, 5% and 10% residuals were tested: higher
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residual values yielded skeletons that were not keeping enough information from
the original object (see discussion in Sec. 7).

Fig. 13 shows detailed results of such experiment in 2d, while Fig. 14 and
Fig. 15 show results in 3d. For both cases, an inverse truncated real rotation
algorithm was used to perform images rotation.
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Figure 13: Hausdorff distance (on the left) and dissimilarity measure (on the right) between
M(Rθ(X)) and Rθ(M(X)) on the 216 shapes of Kimia’s 2D image database for residual values
15% and 25%. Noise level (parameter n) is expressed as a percentage of object area.

The results are summarised in Tables 3 and 4. In Table 3 (resp. Table 4)
we give the average Hausdorff distance (resp. dissimilarity) between M(Rθ(X))
and Rθ(M(X)) on the 216 shapes of Kimia’s database and on the 20 3d shapes
of our database, for residual values 5%, 10%, 15%, 20%, 25% and 30% (for
3d shapes, only 3%, 5% and 10% were tested) and for θ varying from 0 to 89
degrees (in 3d shapes, rotation was performed independently around Y and Z
axes). We show, in the first three columns, the average value obtained for all
tested rotation angles for a given residual, while the fourth column indicates the
average value obtained for all residuals and all rotation angles.

In 3d, DLMA and DLLMA yield, in average, the best results for both mea-
sures. In 2d, they are better than other axes with regards to Hausdorff distance,
and are only outperformed by EMA with regards to dissimilarity.
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Figure 14: Hausdorff distance (on the left) and dissimilarity measure (on the right) between
M(Rθ(X)) and Rθ(M(X)) on the 20 shapes of our 3D image database for residual values 3%,
5% and 10% (the horizontal axis is proportional to the parameter n).

9. Computational cost

In addition to complexity analysis reported in Sec. 5, we made some exper-
iments to compare actual computation costs of the presented methods.

In Fig. 16, we show the results of computing time measurements that we
performed on an Intel Core 2 Duo processor at 1.83 GHz. Computing times for
the GIMA are the lowest, but DLLMA is only slightly slower (and also linear).

10. Conclusion

We introduced the discrete λ-medial axis (DLMA), and its variant DLLMA,
a transposition in discrete grids of the continuous λ-medial axis recently pro-
posed and known for its stability property. The experimental study reported
in this paper shows that both DLMA and DLLMA are robust w.r.t. boundary
noise and rotations in practice. For our experimental study of rotational invari-
ance and border noise robustness, both in 2D and 3D, we introduced an original
methodology that ensures a fair comparison between different methods, under
the mere assumption that their result decreases in size under the control of a
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Figure 15: Hausdorff distance (on the left) and dissimilarity measure (on the right) between
M(Rθ(X)) and Rθ(M(X)) on the 20 shapes of our 3D image database for residual values 3%,
5% and 10% (the horizontal axis is proportional to the parameter n).

0

2

4

6

8

10

12

14

16

0 100000 200000 300000 400000 500000 600000

T
im

e
 (

s
)

Object volume

DLMA

DL’MA

GIMA

Euclidean medial axis

Figure 16: Computing times (in seconds, vert. axis) versus image sizes (horiz. axis).

single parameter. This methodology could be of interest for comparing other
medial axis filtering approaches.
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2D 3D
Residual 10% 20% 30% all 3% 5% 10% all

EMA 8,23 8,13 10,71 8.55 4,86 5,71 6,89 5.82
GIMA 6,94 9,00 13,17 8.65 5,24 5,48 6,64 5.79
DLMA 7,60 9,07 10,97 8.28 3,86 4,65 6,59 5.03

DLLMA 7,41 8,67 10,62 8.02 4,14 4,80 7,26 5.40

Table 3: Average Hausdorff distance between M(Rθ(X)) and Rθ(M(X)) (in 3d, rotations
shown were performed around the Y and around the Z axis). Results shown are averages of
all tested angles. Lowest values are highlighted.

2D 3D
Residual 10% 20% 30% all 3% 5% 10% all

EMA 1,21 1,34 3,88 1,71 0,72 0,72 0,73 0,72
GIMA 1,50 2,41 6,09 2,27 1,40 1,43 1,52 1,45
DLMA 1,46 1,89 3,72 1,94 0,66 0,66 0,76 0,69

DLLMA 1,37 1,78 3,60 1,85 0,67 0,68 0,78 0,71

Table 4: Average dissimilarity between M(Rθ(X)) and Rθ(M(X)) (in 3d, rotations shown
were performed around the Y and around the Z axis). Results shown are averages of all tested
angles. Lowest values are highlighted.

References

[1] Attali, D., Boissonnat, J.-D., Edelsbrunner, H., 2009. Stability and com-
putation of the medial axis — a state-of-the-art report. In: Mathematical
Foundations of Scientific Visualization, Computer Graphics, and Massive
Data Exploration. Springer-Verlag, pp. 109–125.

[2] Attali, D., Lachaud, J., 2001. Delaunay conforming iso-surface, skeleton
extraction and noise removal. Computational Geometry: Theory and Ap-
plications 19, 175–189.

[3] Attali, D., Montanvert, A., 1996. Modelling noise for a better simplification
of skeletons. In: ICIP. Vol. 3. pp. 13–16.

[4] Attali, D., Sanniti di Baja, G., Thiel, E., 1995. Pruning discrete and semi-
continuous skeletons. In: Conference on Image Analysis and Processing.
Vol. 974 of LNCS. Springer, pp. 488–493.

[5] Bai, X., Latecki, L., Liu, W., 2007. Skeleton pruning by contour partition-
ing with discrete curve evolution. IEEE Trans. on PAMI 29 (3), 449–462.

[6] Bertrand, G., 1994. Simple points, topological numbers and geodesic neigh-
borhoods in cubic grids. Pattern Recognition Letters 15, 1003–1011.

19



[7] Blum, H., 1961. An associative machine for dealing with the visual field and
some of its biological implications. Biol. prototypes and synthetic systems
1, 244–260.

[8] Blum, H., 1967. A transformation for extracting new descriptors of shape.
In: Models for the Perception of Speech and Visual Form. MIT Press, pp.
362–380.

[9] Borgefors, G., Ragnemalm, I., di Baja, G. S., 1991. The euclidean distance
transform: finding the local maxima and reconstructing the shape. In: 7th
Scandinavian Conference on Image Analysis. Vol. 2. pp. 974–981.

[10] Chaussard, J., Couprie, M., Talbot, H., 2009. A discrete lambda-medial
axis. In: 15th Discrete Geometry for Computer Imagery (DGCI’09). Vol.
5810 of Lecture Notes in Computer Science. Springer-Verlag, pp. 421–433.

[11] Chazal, F., Cohen-Steiner, D., Lieutier, A., 2009. Normal cone approxi-
mation and offset shape isotopy. Computational Geometry: Theory and
Applications 42, 566–581.

[12] Chazal, F., Lieutier, A., 2005. The λ-medial axis. Graphical Models 67 (4),
304–331.

[13] Coeurjolly, D., 2002. Algorithmique et géométrie discrète pour la car-
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